Lack of PPCA expression only partially coincides with lysosomal storage in galactosialidosis mice: indirect evidence for spatial requirement of the catalytic rather than the protective function of PPCA.

نویسندگان

  • R J Rottier
  • C N Hahn
  • L W Mann
  • M del Pilar Martin
  • R J Smeyne
  • K Suzuki
  • A d'Azzo
چکیده

Protective protein/cathepsin A (PPCA) is a pleiotropic lysosomal enzyme that complexes with beta-galactosidase and neuraminidase, and possesses serine carboxypeptidase activity. Its deficiency in man results in the neurodegenerative lysosomal storage disorder galactosialidosis (GS). The mouse model of this disease resembles the human early onset phenotype and results in severe nephropathy and ataxia. To understand better the pathophysiology of the disease, we compared the occurrence of lysosomal PPCA mRNA and protein in normal adult mouse tissues with the incidence of lysosomal storage in PPCA(-/-) mice. PPCA expression was markedly variable among different tissues. Most sites that produced both mRNA and protein at high levels in normal mice showed extensive and overt storage in the knockout mice. However, this correlation was not consistent as some cells that normally expressed high levels of PPCA were unaffected in their storage capability in the PPCA(-/-) mice. In addition, some normally low expressing cells accumulated large amounts of undegraded products in the GS mouse. This apparent discrepancy may reflect a requirement for the catalytic rather than the protective function of PPCA and/or the presence of cell-specific substrates in certain cell types. A detailed map showing the cellular distribution of PPCA in nomal mouse tissues as well as the sites of lysosomal storage in deficient mice is critical for accurate assessment of the effects of therapeutic interventions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transport of human lysosomal neuraminidase to mature lysosomes requires protective protein/cathepsin A.

Human lysosomal N-acetyl-alpha-neuraminidase is deficient in two lysosomal storage disorders, sialidosis, caused by structural mutations in the neuraminidase gene, and galactosialidosis, in which a primary defect of protective protein/cathepsin A (PPCA) leads to a combined deficiency of neuraminidase and beta-D-galactosidase. These three glycoproteins can be isolated in a high molecular weight ...

متن کامل

The atomic model of the human protective protein/cathepsin A suggests a structural basis for galactosialidosis.

Human protective protein/cathepsin A (PPCA), a serine carboxypeptidase, forms a multienzyme complex with beta-galactosidase and neuraminidase and is required for the intralysosomal activity and stability of these two glycosidases. Genetic lesions in PPCA lead to a deficiency of beta-galactosidase and neuraminidase that is manifest as the autosomal recessive lysosomal storage disorder galactosia...

متن کامل

Mouse model for the lysosomal disorder galactosialidosis and correction of the phenotype with overexpressing erythroid precursor cells.

The lysosomal storage disorder galactosialidosis results from a primary deficiency of the protective protein/cathepsin A (PPCA), which in turn affects the activities of beta-galactosidase and neuraminidase. Mice homozygous for a null mutation at the PPCA locus present with signs of the disease shortly after birth and develop a phenotype closely resembling human patients with galactosialidosis. ...

متن کامل

Correction of murine galactosialidosis by bone marrow-derived macrophages overexpressing human protective protein/cathepsin A under control of the colony-stimulating factor-1 receptor promoter.

Galactosialidosis (GS) is a human neurodegenerative disease caused by a deficiency of lysosomal protective protein/cathepsin A (PPCA). The GS mouse model resembles the severe human condition, resulting in nephropathy, ataxia, and premature death. To rescue the disease phenotype, GS mice were transplanted with bone marrow from transgenic mice overexpressing human PPCA specifically in monocytes/m...

متن کامل

A point mutation in the neu-1 locus causes the neuraminidase defect in the SM/J mouse.

Lysosomal neuraminidase (sialidase) occurs in a high molecular weight complex with the glycosidase beta-galactosidase and the serine carboxypeptidase protective protein/cathepsin A (PPCA). Association of the enzyme with PPCA is crucial for its correct targeting and lysosomal activation. In man two genetically distinct storage disorders are associated with either a primary or a secondary deficie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Human molecular genetics

دوره 7 11  شماره 

صفحات  -

تاریخ انتشار 1998